M ay 2 00 7 SQUARES OF MENGER - BOUNDED GROUPS

نویسنده

  • BOAZ TSABAN
چکیده

Using a portion of the Continuum Hypothesis, we prove that there is a Menger-bounded (also called o-bounded) subgroup of the Baer-Specker group Z, whose square is not Mengerbounded. This settles a major open problem concerning boundedness notions for groups, and implies that Menger-bounded groups need not be Scheepers-bounded. This also answers some questions of Banakh, Nickolas, and Sanchis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 11 35 3 v 1 [ m at h . G N ] 1 2 N ov 2 00 6 SQUARES OF MENGER - BOUNDED GROUPS

Using a portion of the Continuum Hypothesis, we prove that there is a Menger-bounded (also called o-bounded) subgroup of the Baire group Z, whose square is not Menger-bounded. This settles a major open problem concerning boundedness notions for groups, and implies that Menger-bounded groups need not be Scheepers-bounded.

متن کامل

ar X iv : m at h / 06 11 35 3 v 2 [ m at h . G N ] 1 6 N ov 2 00 6 SQUARES OF MENGER - BOUNDED GROUPS

Using a portion of the Continuum Hypothesis, we prove that there is a Menger-bounded (also called o-bounded) subgroup of the Baire group Z, whose square is not Menger-bounded. This settles a major open problem concerning boundedness notions for groups, and implies that Menger-bounded groups need not be Scheepers-bounded.

متن کامل

M ay 2 00 7 THE COMBINATORICS OF THE BAER - SPECKERGROUP

We study subgroups of Z which possess group theoretic properties analogous to properties introduced by Menger (1924), Hurewicz (1925), Rothberger (1938), and Scheepers (1996). The studied properties were introduced independently by Kočinac and Okunev. We obtain purely combinatorial characterizations of these properties, and combine them with other techniques to solve several questions of Babink...

متن کامل

ar X iv : m at h / 06 05 45 4 v 1 [ m at h . M G ] 1 6 M ay 2 00 6 Ahlfors - Regular Curves In Metric Spaces

We discuss 1-Ahlfors-regular connected sets in a metric space. We prove that such a set is ‘flat’ on most scales and locations. We give a quantitative version of this. This, together with work of I. Hahlomaa, gives a characterization of 1-Ahlfors regular subsets of 1-Ahlfors-regular curves in a metric space, generalizing in a way the Analyst’s (Geometric) Traveling Salesman theorems by P. Jones...

متن کامل

ar X iv : m at h / 02 04 00 7 v 3 [ m at h . C O ] 1 4 M ay 2 00 2 Fat 4 - polytopes and fatter 3 - spheres

We introduce the fatness parameter of a 4-dimensional polytope P, defined as φ(P) = ( f1 + f2)/( f0 + f3). It arises in an important open problem in 4-dimensional combinatorial geometry: Is the fatness of convex 4polytopes bounded? We describe and analyze a hyperbolic geometry construction that produces 4-polytopes with fatness φ(P) > 5.048, as well as the first infinite family of 2-simple, 2-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007